Top Leaderboard, Site wide
Left Masthead
October 13, 2015
Truthdig: Drilling Beneath the Headlines
Sign up for Truthdig's Email NewsletterLike Truthdig on FacebookFollow Truthdig on TwitterSubscribe to Truthdig's RSS Feed

Dr. Ben Carson, Crackpot

Primo Levi, Complete

Truthdig Bazaar more items

Print this item

This Researcher Devised His Own Low-Cost Cancer Treatment and Won

Posted on Apr 23, 2014

By Jake Bernstein, ProPublica

(Page 3)

Low-cost alternatives like aspirin must fight for consideration within a scientific community that is producing effective cancer drugs that can command $100,000 or more for a course of treatment. The escalating prices for these drugs worry many involved in the fight against cancer. Some of the new drugs will eventually be used in combination, a step that could push cost of treatment into the hundreds of thousands, says Lichter.

“There is a point at which the equation breaks down and you can’t support the whole treatment process anymore,” he says. “We need to have an environment where we can have new drugs at a price that allows us to use those drugs and still allows these companies that have invested in them to reap a profit. But how we get from here to there is not clear.”

The Pharmaceutical Research and Manufacturers of America, the major trade group representing the world’s top drug companies, declined to comment about financial orphans. A spokeswoman for the group provided a white paper that makes the case that there has been “substantial progress in the fight against cancer.” The impact of new drugs takes years to fully realize, and therapies being developed for single indications may eventually be useful for other cancers, the paper says.

“It is important to keep in mind that innovative medicines are what provide the next generation of generic medicines,” Sally Beatty, a spokeswoman for the drug company Pfizer, says in an emailed statement from the company.


Square, Site wide

The predominant focus of cancer drug development today is on “targeted therapies” that are both innovative and lucrative. These drugs block the growth and spread of cancer by interfering with specific molecules involved in tumor growth. Fashioning these targeted therapies involves costly molecular and genetic experimentation, but once patented the investment can translate into enormous drug company profits.

The Swiss multinational company Novartis created one of the first targeted drugs. Gleevec treats myeloid leukemia and has turned a terminal disease into a chronic one for many patients. In 2012, Novartis had $4.7 billion in global sales from Gleevec. Last year the FDA approved its use for another kind of leukemia that affects children. Novartis declined a request to comment on the issue of financial orphans.

A subset of targeted therapies involves shutting down the ability of cancer cells to evade the body’s immune response. Immunotherapy, as the treatments are called, was long seen as a failed approach until recent molecular breakthroughs. Now, the promise of immunotherapy is ratcheting up the stock prices of several companies that are developing drugs along these lines.

One of the first to get a drug in this class to market was Bristol-Meyers Squibb, with Yervoy. Even though the drug is only approved for advanced melanoma, an aggressive skin cancer, it grossed $960 million last year. A course of treatment goes for about $120,000. Bristol-Meyers also declined a request to comment on the issue of financial orphans.

Some of the financial orphans Global Cures identifies are believed to enhance the immune response to tumors. Without more study it is difficult to isolate exactly why they operate the way they do. Vidula Sukhatme says this is one of the chief complaints she and her husband receive from scientists who disagree with their approach. “They call them ‘dirty medicine,’” she says. “They say, ‘The whole world is going toward targeted therapies and you are going backwards.’”

Sukhatme believes that what matters more than an understanding of the precise mechanism is whether a drug works. It’s possible that these alternatives may have synergistic effects that cannot be reduced to a single molecular target, she says.

Even before his cancer diagnosis, Retsky had dug out the original Laird papers from the medical library at Penrose Hospital in Colorado Springs, where he was a professor at the University of Colorado. The initial study was based on observations of tumors in only 18 rodents and one rabbit. Earlier studies contradicted the findings.

After Retsky weighed the evidence, he decided not to risk his recovery on standard chemotherapy. In January 1995, after surgery to remove his tumor, Retsky was ready for treatment. Yet he was no doctor. An oncologist would need to supervise.

Retsky found Hrushesky, a cancer doctor who split his practice between the Department of Veterans Affairs Albany Stratton Medical Center in New York and another local hospital. Hrushesky had worked with the National Cancer Institute doing therapy evaluation and had gained attention for a theory that the ill effects of chemotherapy could be minimized based on the time of day it was administered. To accommodate patients getting chemotherapy at odd hours, Hrushesky used a pump that operated automatically. He also gave low doses of chemo to patients with late-stage cancers whose bodies couldn’t withstand conventional high-dose therapy. Six years later, the approach would be dubbed “metronomic therapy” by another researcher.

As he sat in Hrushesky’s waiting room, Retsky wondered how the oncologist would greet his unconventional proposal. Hrushesky came out in cowboy boots and proceeded to shake the hand of every patient in the room. Retsky liked him immediately.

In the therapy, Retsky received low doses of a standard chemotherapy agent called Fluorouracil (5-FU) through a pump while he slept at night. The hole in his chest through which the drug flowed required some fussing, but there was no discomfort. The therapy lasted two and a half years, a period Retsky chose based on his estimates of tumor growth and the amount of chemo needed. In aggregate, Retsky received a larger dose of 5-FU than the standard concentrated therapy. Other than a few blood blisters in his mouth and slight skin cracking on his hands, Retsky experienced none of the worst chemo side effects, like nausea, fatigue and hair loss, he and Hrushesky say.

During his therapy, Retsky took a job with the research team of Dr. Judah Folkman, a renowned cancer researcher whose Boston laboratory ushered in new understandings of the way tumors grow. Retsky says he and Folkman, who has since died, went to a meeting with a top scientist at the Dana Farber Cancer Center in Boston, one of the foremost cancer treatment centers in the country, to pitch an exploration of metronomic therapy.

No one was interested. Retsky says they were told it was most likely the surgery rather than the follow-up treatment had stopped his cancer. It’s not an unreasonable response, he says. Without more research, there is no way to know for sure.

Metronomic therapy is a quintessential financial orphan, Vikas Sukhatme says. It has some promising data behind it, but why it appears to function is not well understood. Retsky used a relatively cheap generic. Independent researchers in Canada, Europe and India are exploring similar inexpensive agents with metronomic therapy. The low cost provides little incentive to pharmaceutical companies to investigate but makes it a source of great interest to the developing world.

New and Improved Comments

If you have trouble leaving a comment, review this help page. Still having problems? Let us know. If you find yourself moderated, take a moment to review our comment policy.

Right 1, Site wide - BlogAds Premium
Right Skyscraper, Site Wide
Right Internal Skyscraper, Site wide
Right 2, Site wide - Blogads
Join the Liberal Blog Advertising Network